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Three-dimensional spatially growing perturbations in a two-dimensional compressible
boundary layer are considered within the scope of linearized Navier–Stokes equations.
The Cauchy problem is solved under the assumption of a finite growth rate of the
disturbances. It is shown that the solution can be presented as an expansion into
a biorthogonal eigenfunction system. The result can be used in a decomposition of
flow fields derived from computational studies when pressure, temperature, and all
the velocity components, together with some of their derivatives, are available. The
method can also be used if partial data are available when a priori information may
be utilized in the decomposition algorithm.

1. Introduction
The conventional linear stability theory of boundary layers deals with the quasi-

parallel flow approximation when the characteristic scale of the perturbations, λ
(wavelength), is much smaller than the longitudinal scale of the mean flow, L: i.e.
λ� L. In this approximation, the solution of the linearized Navier–Stokes equations is
considered in the form of normal modes

q(x, y, z, t) = q̂(y) exp(i(αx + βz − ωt)), (1.1)

where x, y, and z are the Cartesian coordinates, and coordinate y stands for distance
from the wall; t is the time; α and β are the x- and z-components of the wavenumber,
respectively. The analysis can be carried out within the scope of the temporal or spatial
approach.

In the case of temporal analysis, the wavenumber of the perturbation is considered
as a real parameter and the complex frequency has to be determined. For
incompressible boundary layer flow, Grosch & Salwen (1978) showed that there
are normal modes of discrete and continuous spectra. Later, Salwen & Grosch
(1981) proved that the solution of the initial-value problem (Gustavsson 1979) can be
presented as an expansion in these normal modes. Their weights can be found from
the initial data with the help of the eigenfunctions of the adjoint problem. There
is an orthogonality condition between the eigenfunctions of the direct and adjoint
problems, and the sets of eigenfunctions are called a biorthogonal eigenfunction
system. Recently, this result was extended to the cases of two- (Fedorov & Tumin
2003) and three-dimensional (Forgoston & Tumin 2005) perturbations in compressible
boundary layers.

In the case of a spatial framework, frequency is prescribed as a real parameter. For
two-dimensional mean flow with coordinate x in the downstream direction, β is a
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real parameter, and the complex wavenumber, α, has to be found. The corresponding
biorthogonal eigenfunction system for spatially growing disturbances was introduced
independently by Zhigulev, Sidorenko & Tumin (1980) and Salwen & Grosch (1981)
for two-dimensional perturbations in incompressible boundary layers. In addition
to discrete modes (Tollmien–Schlichting-type modes), there are four branches of
continuous spectra. The modes of two branches have arbitrary large growth rates
in the downstream direction (they may be interpreted as upstream decaying modes).
This indicates that a spatial Cauchy problem is ill-posed. Tumin & Fedorov (1983b)
suggested considering spatial initial-value problems having finite growth rates in the
downstream direction. In the case of incompressible flow, the initial data require
velocity and pressure perturbations, together with some derivatives with respect to
x. The constraint on the initial data providing finite growth rates in the downstream
direction means that the short-scale upstream perturbations are not included in the
initial data. Under this condition, the Laplace transform with respect to x can be
utilized. When additional a priori information is available, the spatial initial-value
problem can be solved with partial inflow data. For example, Tumin (2003) illustrated
by an example that when the downstream boundary is far away (on the length scale
of the upstream perturbations) one can assume that the solution can be expanded
into downstream modes only, and the spatial initial-value problem is solvable with
only velocity perturbations as the initial data.

Apparently, recovering the whole flow field from one velocity component is
impossible, even under the assumption that only downstream modes are involved
in the solution. However, if it is known that the main input into the perturbations is
associated with a finite number of specific modes, one can still find their amplitudes.
For example, two unstable discrete modes coexist in a laminar wall jet. Therefore,
Tumin et al. (1996) assumed that experimental data were composed of the unstable
modes only and found their amplitudes and phases from experimental data for one
velocity component only. Afterwards, the quality of the decomposition could be
checked by comparing the experimental data with data obtained with the help of
the utilized normal modes and their recovered weights. Guydos & Tumin (2004)
illustrated this approach by an example of two-dimensional perturbations in a
compressible boundary layer. One can see that decomposition of experimental data
should depend on the quality of the assumptions. In compressible boundary layers,
results of measurements could be contaminated by acoustic perturbations that can
penetrate into the boundary layer. Therefore, in order to provide a reasonable accuracy
of the decomposition aimed at a discrete mode, one also needs data for the external
acoustic field (Guydos 2004).

An analysis of compressible (Tumin & Fedorov 1983b) and incompressible
(Zhigulev & Tumin 1987) boundary layers using the Laplace transform with respect
to the streaming coordinate, x, demonstrated the completeness of the biorthogonal
eigenfunction system for two-dimensional perturbations. Three-dimensional spatially
growing/decaying perturbations in an incompressible boundary layer were considered
by Tumin (2003). A biorthogonal eigenfunction system for three-dimensional
perturbations in compressible boundary layers was formally introduced by Tumin
(1983) without analysis of the spatial initial-value problem, which is necessary to
establish an expansion of the solution into normal modes of discrete and continuous
spectra.

The biorthogonal eigenfunction system was found to be a powerful tool for solving
receptivity problems for boundary layers and for internal flows (Zhigulev et al. 1980;
Fedorov 1982; Tumin & Fedorov 1983a; Tumin 1983; Tumin & Fedorov 1984;
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Fedorov 1984; Zhigulev & Fedorov 1987; Fedorov 1988; Hill 1995; Tumin 1996;
Tumin & Aizatulin 1997; Tumin 1998; Fedorov & Khokhlov 2002; Fedorov 2003a , b).
Originally, the method was utilized for analysis of discrete modes (Tollmien–
Schlichting-type modes) only. After clarification of uncertainties associated with the
continuous spectra (Tumin 2003), the method was also applied to the analysis of
roughness-induced perturbations (Tumin & Reshotko 2004, 2005; Tumin 2006b). It
was proven (Tumin & Aizatulin 1997; Tumin 2006a) that the receptivity solution
based on the biorthogonal eigenfunction expansion is equivalent to the method used
by Ashpis & Reshotko (1990), whereas in the triple-deck limit the method leads to
the results by Smith, Sykes & Brighton (1977) and Terent’ev (1981).

Another emerging application of the biorthogonal eigenfunction system is
associated with the progress being made in computational fluid dynamics (CFD),
which provides an opportunity for reliable simulation of such complex phenomena
as boundary layer receptivity and laminar–turbulent transition (Ma & Zhong 2001,
2003a ,b, 2005; Zhong & Ma 2002; Egorov, Fedorov & Nechaev 2004; Egorov,
Fedorov & Soudakov 2005; Wang & Zhong 2005, 2007). In addition to experimental
observations, CFD provides complete information about the flow field that cannot
be measured in real experiments. However, this increase in available information
does not furnish physical insight to the problem because the leading mechanisms still
remain hidden behind a messy disturbance field. Sometimes a flow possesses several
discrete modes that are equally significant in the transition process, and it might be
desirable to distinguish the dynamics of each mode in the complex non-steady flow
field. Consequently, the problem of flow fields decomposing into normal modes arises.
Guydos & Tumin (2004) demonstrated how the biorthogonal eigenfunction system
could be applied to an analysis of CFD data for two-dimensional perturbations
in a compressible boundary layer. In order to find the amplitudes of the normal
modes comprising the perturbations, it is necessary to provide velocity components,
temperature, pressure, and some of their derivatives at one cross-section only. The
orthogonality relation for the eigenfunctions of the direct and adjoint problems
provides a straightforward tool to filter out amplitudes of the modes. Tumin, Wang &
Zhong (2007) applied the technique to analyse perturbations generated in a high-speed
boundary layer by blowing–suction through a slot on the wall. Amplitudes of stable
and unstable discrete modes were filtered out from the CFD results and compared with
the solution of the receptivity problem. Their work illustrates how the biorthogonal
eigenfunction system could be used to gain insight into the details of the flow field that
would have remained hidden without the advanced analysis. Future progress of com-
putational efforts will be associated with three-dimensional perturbations (Wang &
Zhong 2007), and an extension of the multimode decomposition method is required.

The objective of the present paper is to solve the spatial initial-value problem for
three-dimensional perturbations in a compressible boundary layer, and to decompose
the solution into the normal modes of the discrete and continuous spectra.

Briefly, the structure of the paper is as follows. The spatial Cauchy problem is
solved in § 2. Section 3 provides a brief recapitulation of the continuous and discrete
spectra in compressible boundary layers. In § 4, the biorthogonal eigenfunction system
is utilized to decompose three-dimensional perturbations into modes of discrete
and continuous spectra. A discussion and summary of the results are given in § 5.
Appendix A contains non-zero elements of matrices that are introduced in the
governing equations. In Appendix B, we present definitions and details relevant to the
biorthogonal eigenfunction system for spatially growing/decaying three-dimensional
perturbations. Details of the numerical methods are provided in Appendix C.
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2. Spatial Cauchy problem
We consider a compressible two-dimensional boundary layer in Cartesian

coordinates, where x and z are the downstream and spanwise coordinates, respectively,
and coordinate y corresponds to the distance from the wall. We write the governing
equations (the linearized Navier–Stokes equations) for a periodic-in-time perturbation,
∼exp(−iωt), in the matrix form

∂

∂y

(
L0

∂ A
∂y

)
+ L1

∂ A
∂y

= H1 A + H2

∂ A
∂x

+ H3

∂ A
∂z

, (2.1)

where vector A has 16 components:

A(x, y, z) = (u, ∂u/∂y, v, π, θ, ∂θ/∂y, w, ∂w/∂y, ∂u/∂x, ∂v/∂x,

∂θ/∂x, ∂w/∂x, ∂u/∂z, ∂v/∂z, ∂θ/∂z, ∂w/∂z)T . (2.2)

L0, L1, H1, H2, and H3 are 16 × 16 matrices (their definitions are given in Appendix A);
u, v, w, π, and θ represent three velocity components, pressure, and temperature
perturbations, respectively; and the superscript T in (2.2) and in what follows
stands for the transpose. The mean flow is assumed to be parallel (quasi-parallel
approximation). Solution of (2.1) is subject to the following boundary conditions:

y = 0: u = v = w = θ = 0, (2.3)

y → ∞: |Aj | → 0 (j = 1, . . . , 16). (2.4)

We consider the spatial Cauchy problem for (2.1) assuming that the initial data,
A0(y, z), at x =0 correspond to the solution having a finite growth rate in the
downstream direction.

After applying the Fourier transform with respect to the coordinate z and the
Laplace transform with respect to x,

Apβ(y) =

∫ ∞

0

e−px

∫ ∞

−∞
e−iβz A(x, y, z) dz dx, (2.5)

we arrive at the following system of ordinary differential equations:

d

dy

(
L0

dApβ

dy

)
+ L1

dApβ

dy
− H1 Apβ − pH2 Apβ − iβ Apβ = −H2 A0β, (2.6)

where

A0β(y) =

∫ ∞

−∞
e−iβz A0(y, z) dz. (2.7)

The homogeneous part of (2.6) can be recast as an equation for vector z composed
of the first eight elements of vector Apβ as follows:

dz
dy

= H0z, (2.8)

where H0 is an 8 × 8 matrix.
There are eight fundamental solutions, z1, . . . , z8, of the homogeneous system of

equations (2.8). Outside the boundary layer (y → ∞), H0 is a matrix of constant
coefficients, and thus each fundamental solution has an exponential asymptotic
behaviour ∼exp(λj y), where λ1, . . . , λ8 are determined from the characteristic equation

det ‖H0 − λI‖ = 0, (2.9)
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that can be recast as follows:

(b11 − λ2)2 × [(b22 − λ2)(b33 − λ2) − b23b32] = 0, (2.10)

where

b11 = H 21
0 , (2.11a)

b22 = H 42
0 H 24

0 + H 43
0 H 34

0 + H 46
0 H 64

0 + H 48
0 H 84

0 , (2.11b)

b23 = H 42
0 H 25

0 + H 43
0 H 35

0 + H 46
0 H 65

0 + H 48
0 H 85

0 , (2.11c)

b32 = H 64
0 , b33 = H 65

0 , (2.11d)

with H
ij

0 denoting the (i, j ) element of matrix H0. The roots of (2.10) are (we substitute
p = iα)

λ2
1,2 = λ2

7,8 = b11 = α2 + β2 + iRe(α − ω), (2.12)

λ2
3,4 = (b22 + b33)/2 + 1

2

√
(b22 − b33)2 + 4b23b32, (2.13)

λ2
5,6 = (b22 + b33)/2 − 1

2

√
(b22 − b33)2 + 4b23b32. (2.14)

The root branches are chosen to have Re(λ1, λ3, λ5, λ7) < 0, and we define a matrix
of fundamental solutions,

m = ‖z1, . . . , z8‖. (2.15)

We use a lower-case z for vectors having 8 components, whereas vectors having 16
components will be denoted by a capital Z. By the definition of the components
in (2.2), one can find all the components of the fundamental solutions Z if the
fundamental solutions z are known.

The non-homogeneous system given by (2.6) has a solution expressed in the form

Ap = M Q(y) + G, (2.16)

where M is the matrix of fundamental solutions composed of vectors Zj (j = 1, . . . , 8),
and the vector of coefficients Q(y) has to be found. Vector G(y) is defined as follows:

G1 = . . . = G8 = 0,

G9 = −F9; . . . , G16 = −F16,

}
(2.17)

where Fj are components of the vector F(y) = −(H2 A0β). After substituting (2.16)
into (2.6), we arrive at the following system of equations for Q:

2L0

dM

dy

d Q
dy

+ L0M
d2 Q
dy2

+
dL0

dy
M

d Q
dy

+ L1M
d Q
dy

+ L1

dG
dy

− H1G − pH2G − iβH3G = F. (2.18)

Let us consider the individual equations of (2.18). Denoting as zij the ith component
of vector zj , Qj the j th component of vector Q, and Fj the j th component of vector
F, then the first, third, fifth, sixth, and seventh equations of (2.18) are, respectively,

z1j

dQj

dy
= 0, z3j

dQj

dy
= F3, z5j

dQj

dy
= 0, (2.19a–c)

z6j

dQj

dy
− pF11 = F6, z7j

dQj

dy
= 0, (2.19d , e)
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where the index summation rule is imposed, and the explicit form of the matrix
elements (see Appendix A) is taken into account. Using (2.19b), and the definitions
Z10j =pz3j and Z14j = iβz3j , the second and eighth equations of (2.18) are, respectively,

z2j

dQj

dy
+ (m + 1)

dG10

dy
+ (m + 1)pF3 + pH 29

2 F9 − iβ(m + 1)F12 = F2, (2.20a)

z8j

dQj

dy
+ (m + 1)iβF3 + (m + 1)

dG14

dy
+ pG12 = F8. (2.20b)

The fourth equation of (2.18) is recast as

L43
0

dz3j

dy

dQj

dy
+

d

dy

(
L43

0 z3j

dQj

dy

)
+ z4j

dQj

dy
− pH 4,10

2 G10 = F4. (2.21)

The third equation of (2.8) yields

dz3j

dy
= H 31

0 z1j + H 33
0 z3j + H 34

0 z4j + H 35
0 z5j + H 37

0 z7j . (2.22)

After substitution of (2.22) into (2.21) and taking into account (2.19), we arrive at

z4j

dQj

dy
=

[
F4 − L43

0 H 33
0 F3 −

d
(
L43

0 F3

)
dy

+ pH 4,10
2 G10

] (
1 + L43

0 H 34
0

)−1
. (2.23)

Therefore, we have the following algebraic system of equations for dQj/dy:

m
d Q
dy

= ϕ, (2.24)

where vector ϕ has the following eight components:

ϕ1 = 0, (2.25a)

ϕ2 = F2 − (m + 1)
dG10

dy
− (m + 1)pF3 − pH 29

2 F9 + iβ(m + 1)F12, (2.25b)

ϕ3 = F3, (2.25c)

ϕ4 =

[
F4 − L43

0 H 33
0 F3 −

d
(
L43

0 F3

)
dy

+ pH 4,10
2 G10

] (
1 + L43

0 H 34
0

)−1
, (2.25d)

ϕ5 = 0, ϕ6 = F6 + pF11, ϕ7 = 0, (2.25e–g)

ϕ8 = F8 − (m + 1)iβF3 − (m + 1)
dG14

dy
− pG12. (2.25h)

One can solve the algebraic equations (2.24) and write the solution of (2.6) for the
first eight components as follows:

Apβ =

8∑
j=1

(
aj +

∫ y

yj

dQj

dy
dy

)
zj , (2.26)
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where the constants aj and yj are determined using the boundary conditions. Using
properties of determinants, we obtain the following solution:

Apβ =

(
a1+

∫ y

0

dQ1

dy
dy

)
z1 +

∫ y

∞

dQ2

dy
dy z2+

(
a3 +

∫ y

0

dQ3

dy
dy

)
z3 +

∫ y

∞

dQ4

dy
dy z4

+

(
a5 +

∫ y

0

dQ5

dy
dy

)
z5 +

∫ y

∞

dQ6

dy
dy z6 +

(
a7 +

∫ y

0

dQ7

dy
dy

)
z7 +

∫ y

∞

dQ8

dy
dy z8,

(2.27)

where

a1 =
c2E2357 + c4E4357 + c6E6357 + c8E8357

E1357

,

a3 =
c2E1257 + c4E1457 + c6E1657 + c8E1857

E1357

,

a5 =
c2E1327 + c4E1347 + c6E1367 + c8E1387

E1357

,

a7 =
c2E1352 + c4E1354 + c6E1356 + c8E1358

E1357

,

cj =

∫ ∞

0

dQj

dy
dy,

Eijkl = det

∥∥∥∥∥∥∥
z1i z1j z1k z1l

z3i z3j z3k z3l

z5i z5j z5k z5l

z7i z7j z7k z7l

∥∥∥∥∥∥∥
y=0

.

Although the result (2.27) formally looks the same as in Forgoston & Tumin (2005),
the derivatives dQj/dy are found from a different set of algebraic equations.

The inverse Laplace transform,

Aβ(x, y; β) =
1

2πi

∫ p0+i∞

p0−i∞
Apβ(y; p, β)epx dp, (2.28)

will be determined by the poles corresponding to the roots E1357 = 0, and by the branch
cuts associated with the equations Re(λ1, λ3, λ5, λ7) = 0. The structure of the branch
cuts is the same as in the case of two-dimensional perturbations (Guydos & Tumin
2004). They represent perturbations of the continuous spectra: vorticity, entropy, and
acoustic modes. A brief recapitulation of the continuous spectra is provided in § 3.
The constraint on the initial data ensures that there is p0 such that the solution is
analytic at Re(p) � p0 and the path of integration in (2.28) lies in the domain of
analyticity of Apβ .

The result (2.28) is recast as a sum of integrals along the sides γ + and γ − of each
left-hand-side branch in the complex plane p that represent input from the continuous
spectra, and a sum of the residue values corresponding to the input from the discrete
spectrum,

Aβ = − 1

2πi

∑
m

(∫
γ +

m

Apβe
px dp +

∫
γ −

m

Apβe
px dp

)
+

∑
n

Resn(Apβe
px). (2.29)

The three-dimensional character of the perturbations leads to overlapping of the
two branches corresponding to the vorticity modes, similar to the cases of spatial



302 A. Tumin

(Tumin 2003) and temporal (Forgoston & Tumin 2005) analysis of three-dimensional
perturbations. The latter is reflected by the double root in (2.12).

In principle, the assumption of a finite growth rate of the solution (2.29) allows
inclusion of a portion from the upstream modes into the initial data (Tumin &
Fedorov 1983b; Tumin 2003). However, the typical applications of the method are
associated with downstream modes only, and the upstream modes are excluded from
the consideration.

Similar to the analysis of the initial-value problem, the integrals along the branch
cut sides can be written as one integral of the difference A+

pβ − A−
pβ , where superscripts

+ and − indicate values evaluated at sides γ + and γ −, respectively. Although the
coefficients cj in (2.27) are different from those defined in Forgoston & Tumin (2005),
all formulae for A+

pβ − A−
pβ remain the same for the spatial Cauchy problem under

consideration. Particularly, for branch cuts corresponding to the acoustic waves,
λ3,4 = ± ik, where k > 0, we find

Ac,4 = A+
pβ − A−

pβ

=

(
c2E1275

E1753E1754

+
c3E1753

E1753E1754

+
c4E1754

E1753E1754

+
c6E1756

E1753E1754

+
c8E7185

E1753E1754

)
× (E5734z1 + E1754z3 + E7153z4+ E7134z5 + E1534z7). (2.30)

All functions on the right-hand side (2.30) are evaluated at the γ + side of the branch
cut, where z3 ∼ exp(+iky).

In the region of overlapping vorticity modes, we can use the result for the initial-
value problem to represent A+

pβ − A−
pβ as a sum of stand-alone modes corresponding

to λ1,2 = λ7,8 = ±ik (k > 0):

A+
pβ − A−

pβ = Ac,1 + Ac,5, (2.31)

where

Ac,1 =

(
c1E1753

E1753E2753

+
c2E2753

E1753E2753

+
c4E4753

E1753E2753

+
c6E6753

E1753E2753

+
c8E8753

E1753E2753

)
× (E2753z1 − E1753z2 + E1275z3 + E1723z5 + E1253z7) (2.32)

and

Ac,5 =

(
c1E1253

E2753E2853

+
c4E5234

E2753E2853

+
c6E2563

E2753E2853

+
c7E7253

E2753E2853

+
c8E8253

E2753E2853

)
× (E7853z2 + E2785z3 − E2783z5 − E2853z7 + E2753z8). (2.33)

We call modes (2.32) and (2.33) vorticity modes A and B, respectively. Here notation
γ + corresponds to the branch-cut side where z1 and z7 have asymptotics ∼exp(+iky).

In the case of steady supersonic perturbations, there is an overlapping of two
vorticity modes and the entropy mode with λ5,6 = ±ik (k > 0). For this case, we can
also use the result for the initial-value problem,

A+
pβ − A−

pβ = Ac,1 + Ac,2 + Ac,5, (2.34)

where Ac,1 and Ac,5 are given by (2.32) and (2.33), and

Ac,2 =

(
c1E1283

E2853E2863

− c4E2834

E2853E2863

+
c5E2853

E2853E2863

+
c6E2863

E2853E2863

− c7E2783

E2853E2863

)
× (E8563z2 + E2856z3 + E2863z5 − E2853z6 − E2563z8). (2.35)

In (2.35), the side γ + also means that z5 ∼ exp(+iky).
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In the case of steady subsonic perturbations, there is an overlapping of four modes.
This case has not yet been considered elsewhere. Similarly to the other cases, one can
derive

A+
pβ − A−

pβ = Ac,1 + Ac,2 + Ac,3 + Ac,5, (2.36)

where Ac,3 is defined as follows:

Ac,3 =

(
c1E6218

E2863E2468

− c3E2863

E2863E2468

+
c4E2468

E2863E2468

− c5E6528

E2863E2468

− c7E6728

E2863E2468

)
× (E6348z2 − E2468z3 − E2863z4 − E2834z6 + E2463z8). (2.37)

In addition, we should address the discrete spectrum, which is associated with poles
originating from zeros, pn, of the equation E1357(pn) = 0. Their input into (2.29) is
presented by the residue values

Resn(Apepx) =
epnx

(∂E1357/∂p)
[z1(c2E2357 + c4E4357 + c6E6357 + c8E8357)

+ z3(c2E1257 + c4E1457 + c6E1657 + c8E1857)

+ z5(c2E1327 + c4E1347 + c6E1367 + c8E1387)

+ z7(c2E1352 + c4E1354 + c6E1356 + c8E1358)], (2.38)

where the right-hand side is evaluated at p = pn. Taking into account that E1357 = 0,
one can derive from (2.38)

Resn(Apepx) = epnx
(c2E1257 + c4E1457 + c6E1765 + c8E1578)

(∂E1357/∂p)E1457

× (z1E4357 + z3E1457 + z5E1347 + z7E1354). (2.39)

The result (2.39) represents a discrete mode that is composed of four fundamental
solutions, z1, z3, z5, and z7, decaying outside the boundary layer. This result and the
results for the continuous spectra were verified using Mathematica (Wolfram 1999).

One can see that input into the inverse Laplace transform (2.29) from the integrals
along branch cuts [(2.30), (2.32), (2.33), (2.35), (2.37)], and the residue values evaluated
at the poles (2.39) are written as stand-alone modes (vector functions) with coefficients
depending on the initial conditions A0(y, z),

Aβ(x, y) =
∑

ν

dν Aαν
(y)eiανx +

∑
j

∫ ∞

0

dj (k)Aαj
(y)eiαj (k)x dk. (2.40)

Here,
∑

ν and
∑

j denote sums over the discrete spectra and branches of the
continuous spectra, respectively. The coefficients dν and dj also can be found from the
initial data, A0(y, z), using the biorthogonal eigenfunction system {Aαβ, Bαβ} defined
in Appendix B. The solution (2.40) provides the background for the multimode
decomposition that is discussed in § 4.

3. Recapitulation of properties of spectra
3.1. Continuous spectra

Although one can find properties of continuous spectra for perturbations in
compressible boundary layers elsewhere (Tumin & Fedorov 1983b; Balakumar &
Malik 1992; Guydos & Tumin 2004), for the sake of clarity we briefly recapitulate
these properties.
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Figure 1. Branch cuts in the upper half-plane, α. M = 5.95, F = 10−4, Re = 1500, β = 10−4 .
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Figure 2. Streamwise velocity perturbation of (a) vorticity mode A and (b) entropy mode.
M =5.95, Tw/Tad = 0.1, F = 10−4, Re = 1500, β = 0.16, k = 1.

The structure of the three-dimensional continuous spectra is similar to the two-
dimensional case discussed in Guydos & Tumin (2004). As in the two-dimensional
case, there are seven branches. Three-dimensionality leads to two vorticity modes, A
and B (see § 2), stemming from the vector character of the quantity. There are branches
associated with the upstream modes that are of no interest to the present work.
Figure 1(a) shows branches of the downstream modes in the complex plane α = −ip (p
is the Laplace variable in § 2) at Mach number M = 5.95, Reynolds number Re = 1500,
β = 10−4, and frequency parameter F = ωµe/ρeU

2
e = 10−4, where the subscript e stands

for the flow parameters at the edge of the boundary layer. In what follows, we use the
specific heat ratio γ = 1.4, and assume that viscosity is a function of the temperature
in accordance with Sutherland’s law. Results in figure 1 were obtained at Prandtl
number Pr = 0.72, free-stream stagnation temperature T0 = 470 K, and bulk viscosity
parameter e = 0.8 (see Appendix A). One can see two horizontal branches representing
the slow (SA) and fast (FA) acoustic waves. In the limit of high Reynolds numbers, the
branch points correspond to phase velocities c = 1 ± 1/M . The vorticity and entropy
modes are indistinguishable in the scale of figure 1(a), but they are not identical,
as one can see from figure 1(b). However, there is an overlapping of the modes at
ω = 0. In the limit of high Reynolds numbers, the branch points of the vorticity and
entropy modes are α ≈ ω. One can find more details about the branch points for
three-dimensional perturbations in Balakumar & Malik (1992).

In the case of three-dimensional perturbations, the modes of continuous spectra
are composed of five fundamental solutions. Some of them are oscillating outside the
boundary layer as ∼exp(±iky), whereas the others are decaying. Figures 2(a, b)
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and 3(a, b) show real, ur , and imaginary, ui , parts of the streamwise velocity
perturbations of the vorticity, entropy and two acoustic modes in the case of a
boundary layer over a flat plate with temperature factor Tw/Tad = 0.1, where Tw and
Tad are the wall temperature and the temperature of the adiabatic wall, respectively.
We use the length scale H = (µex/ρeUe)

1/2, where x is the distance from the leading
edge. The continuous spectrum parameter in these examples is k =1. The other
parameters are the same as in figure 1, except the spanwise wavenumber, which is
β = 0.16. The solutions are normalized by the wall condition du/dy(0) = 1. One can
see that the vorticity and entropy modes do not penetrate the boundary layer at these
parameters, whereas the acoustic modes have velocity perturbations significantly
larger than outside the boundary layer. This phenomenon is the reason why the
quality of perturbation measurements in high-speed boundary layers depends on the
level of the acoustic perturbations originated in boundary layers over wind-tunnel
walls.

Figure 4 shows branches of the continuous spectra in the complex plane, α, for
a subsonic boundary layer at Mach number M = 0.5 , Re =1500, F = 10−4, and
β = 10−4. In the limit M → 0, the branch cuts corresponding to the acoustic modes
degenerate to the imaginary axis of α. In the limit Re → ∞, the acoustic branch cuts
form a cross with the midpoint at α = −M2ω/(1 − M2) (Fedorov 1982; Zhigulev &
Tumin 1987).
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3.2. Slow and fast discrete modes

As was found by Mack (1969), the discrete spectrum of perturbations in supersonic
boundary layers is more complicated than in the subsonic case. Fedorov & Khokhlov
(2001) noticed that at high Mach numbers (when the so-called second Mack’s mode
exists) there are two discrete modes (stable and unstable) that could be synchronized
at some downstream coordinate, x, depending on the flow parameters and the
perturbation frequency. Because at small Reynolds numbers one discrete mode is
synchronized with the slow acoustic mode, whereas the other mode is synchronized
with the fast acoustic mode, Fedorov (2003a) suggested calling them slow and fast
discrete modes, respectively. The synchronization means that these discrete modes
could be generated by acoustic waves interacting with the leading edge of a flat plate.

Both the slow and fast discrete modes could be involved in the laminar–turbulent
transition scenario. For example, the decaying mode could be generated by the entropy
or vorticity modes of the continuous spectra. At the point of synchronism between the
fast and slow modes, the decaying mode can give rise to the unstable mode (switching
of the modes), which may lead to the transition. The scenario suggested by Fedorov &
Khokhlov (2001) means that both the stable and unstable modes are of interest for
understanding transition mechanisms. Later, switching of the modes was observed in
direct numerical simulations of perturbations in high-speed boundary layers (Ma &
Zhong 2003b).

In order to clarify the terminology and to illustrate the motivation for analysis of
stable discrete modes, we provide an example of slow and fast discrete modes in a
boundary layer of a calorically perfect gas over a flat plate. The free-stream stagnation
temperature T0 = 470 K, the edge Mach number M = 5.6, the Prandtl number Pr =
0.71, and we employ Stokes’ hypothesis (e =0 in the matrix elements of Appendix A).

In the limit of two-dimensional perturbations, we choose a small spanwise wave-
number, β = 5.7 × 10−5. The local Reynolds number, Re = 704. Figure 5 shows the
map of eigenvalues obtained with the help of the spectral collocation method. The
frequency parameter is F = 150 × 10−6. One can see the discretized continuous spectra.
There are two horizontal branches corresponding to the slow and fast acoustic modes,
and a vertical branch corresponding to the vorticity and entropy modes. Also, one
can see fast (F) and slow (S) discrete modes. Figure 6(a, b) illustrates real, αr , and
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Figure 6. (a) Imaginary and (b) real parts of the wavenumber. M = 5.6, Re =704,
F = 150 × 10−6, β = 5.77 × 10−5.

imaginary, αi , parts of the downstream wavenumber α versus the frequency. Lines SA
and FA in figure 6(b) represent slow and fast acoustic modes with phase velocities
c = 1 ∓ 1/M , respectively. Figure 6(b) also shows the line corresponding to the phase
velocity c =1 that represents vorticity and entropy perturbations moving with the
free stream. One can see that at ω → 0 the discrete modes S and F are synchronized
with the slow (SA) and the fast (FA) acoustic modes. This synchronization means
that there is a channel of coupling between the acoustic and discrete modes.

At ω ≈ 0.12, the mode F is synchronized with the vorticity mode (c = 1). This
synchronization is accompanied by discontinuity in αi . As was discussed by Fedorov &
Tumin (2003), the discrete mode coalesces with the continuous spectrum from one side
of the branch cut and reappears on the other side at another point. Mathematically,
the pole associated with mode F approaches one side of the branch cut on the
complex-p plane. At the same time, another pole, located on the lower Riemann
sheet, approaches the branch cut. As the pole on the plane coalesces with the branch
cut, it moves to the upper Riemann sheet while, simultaneously, the pole that was
on the lower Riemann sheet moves into the complex-p plane at another point.
The discontinuity of αi at the point of synchronism between a discrete mode and
the vorticity/entropy modes could also be seen in plots published by other authors
(Mack 1969; Eißler & Bestek 1993). Usually, the discontinuity looks like a wiggle
on the plots, and it has not been interpreted as a discontinuity. Balakumar & Malik
(1992) reported coalescence of discrete modes with the vorticity/entropy branch cut
in the complex plane α, but they did not report the reappearance of a discrete mode
from another side.

There is a synchronism between mode F and mode S at ω ≈ 0.13. However, there
is no coalescence of the eigenvalues. A model of two-mode synchronism considered
in Fedorov & Khokhlov (1991) and Fedorov & Khokhlov (2001) explains branching
of the modes at the point of synchronism. At this point, one of the modes becomes
unstable, whereas the other one moves toward positive αi . Although in this example
the modes have the same value of cr ≈ ω/αr at ω ≈ 0.13, the minimum of |αF − αS |
exists in the vicinity of ω ≈ 0.11, and this is actually the point of the modes’ branching.
The synchronism between mode F and the vorticity/entropy modes accompanied by
the synchronism between modes F and S suggests that there is a scenario associated
with excitation of mode F by vorticity/entropy modes, and mode F can give rise to
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the unstable mode S at the point of their synchronism. The aforementioned properties
of a discrete spectrum are typical for high Mach number (M > 4) and an adiabatic
wall.

Figure 7(a, b) illustrates αr and αi for mode S as functions of frequency at three
wavenumbers β =5.77 × 10−5, 4.62 × 10−2, and 9.24 × 10−2. One can see from figure 7
that there is no significant effect on αr , and that αi has two minima. The first
minimum (at lower ω) demonstrates that the mode is more unstable in the case
of three-dimensional perturbations, whereas the magnitude of the second minimum
decreases with an increase of β . Usually, these two peaks are associated with Mack’s
mode 1 and mode 2, respectively. This terminology originated from Mack’s analysis
of inviscid perturbations (Mack 1969). He found that an increase of Mach number
is accompanied by an increase of distinct unstable discrete modes. Using asymptotic
analysis, Gushchin & Fedorov (1989) showed that each amplified inviscid mode
represents a separate solution. At finite Reynolds numbers, the structure of the
discrete spectrum is different. Results in figure 7 correspond to one discrete normal
mode, and the minima in αi are only the footprints of Mack’s mode 1 and mode 2.

4. Decomposition of three-dimensional perturbations
4.1. Examples when all components of the vector A0 are available

Recently, the multimode decomposition was successfully applied by Tumin et al.
(2007) to an analysis of CFD data in the case of two-dimensional perturbations. The
results of § 2 and the orthogonality relation (B 6) provide a tool for decomposition
of three-dimensional perturbations into normal modes of discrete and continuous
spectra. To illustrate application of the method to three-dimensional perturbations,
we emulate the ‘CFD’ data by superposition of modes from discrete and continuous
spectra, and use the orthogonality condition in order to decompose the perturbation
and to recover weights of the modes.

In the first example, we consider superposition of mode S, mode F, and a vorticity
mode A in the boundary layer over a flat plate at M = 5.95, Tw/Tad = 0.1. The
frequency parameter F = 10−4, the Reynolds number Re =1895, and the spanwise
wavenumber β = 0.16. The parameter k of the vorticity mode is equal to one. The
eigenfunctions of these modes are normalized by the wall condition ∂u/∂y(0) = 1.
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Tw/Tad = 0.1, F = 10−4, Re = 2300, β =0.16, CS =1, CF = −1, CFA =2, CSA = 2.

Figure 8(a) shows superposition results of two discrete modes with weights CS =1
and CF = −1 for the slow and fast modes, respectively. Decomposition with the help
of the orthogonality relation (B 6) leads to the restored values of the coefficients
CS = 0.999996 + i 5.55698 × 10−7 and CF = −1.00001 + i 1.78601 × 10−6.

Figure 8(b) shows results when, in addition to the discrete modes as in figure 8(a),
there is a vorticity mode with weight CV = 2. For this case, the decomposition with
the help of the orthogonality relation (B 6) leads to the coefficients CS = 0.999999 +
i 1.21594 × 10−6 and CF = −1.00002 − i 3.90897 × 10−6.

Examples of decomposition when the perturbations were composed of mode S
(CS =1), mode F (CF = −1), and an acoustic wave are shown in figure 9(a, b).
Figure 9(a) illustrates the case when the fast acoustic wave was used with CFA = 2,
k = 1, while the example with the slow acoustic wave (CSA = 2, k = 1) is shown in
figure 9(b). Results of the decomposition for the case corresponding to figure 9(a)
were CS =0.999966 − i 4.79233 × 10−6 and CF = −1.00008 + i 6.22089 × 10−5. For the
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example corresponding to figure 9(b), we found CS = 0.999948 − i 1.70326 × 10−4 and
CF = −0.999860 + i 1.87548 × 10−4.

4.2. An example with partial data available

Similarly to the analysis of two-dimensional perturbations in Guydos & Tumin (2004),
one can consider decomposition of three-dimensional perturbations when only partial
information is available, as happens when experimental data are used. To proceed
with the decomposition, one has to make an assumption about the modes input into
the measured function. The accuracy of the assumption can be checked a posteriori
by comparing the measured function to that constructed with the weights found from
the decomposition.

Decomposition of steady three-dimensional perturbations into modes of continuous
spectra is a more complicated problem because there are overlapping vorticity,
entropy, and pressure (subsonic flow) modes of the continuous spectra. In the case
of incompressible flow (Tumin 2003), the expansion into vorticity modes of the
continuous spectra was approximated by a sum of the finite number of the modes
with unknown coefficients that were found from a system of algebraic equations. The
same algorithm, in principle, could be utilized for decomposition of perturbations into
the vorticity modes of the continuous spectra in a compressible boundary layer. To
illustrate the application, we consider a steady perturbation corresponding to optimal
transiently growing disturbances at Mach number M = 3. We emulate the ‘measured’
velocity components and temperature perturbations by the solutions of the linearized
boundary layer equations over a flat plate with an adiabatic wall (Tumin & Reshotko
2003). The Reynolds number is based on the free-stream velocity and the Blasius
scale H is equal to 301.64. The spanwise wavenumber, β , is equal to 0.45.

For the purpose of this analysis, we assume that there is no influence from the
upstream modes, and we carry out the decomposition only into two vorticity modes,
A and B (see (2.32) and (2.33)) and entropy modes. For this type of perturbation
(counter-rotating streamwise vortices), we assume that input from the acoustic branch
cuts is negligible, and they are not included in the decomposition algorithm. For the
present example, the continuous spectrum is discretized by 400 modes on the interval
k ∈ (0, 4).

Overlapping of the entropy and vorticity modes leads to significant complication
of the algorithm. In order to avoid the overlapping, we used eigenfunctions of
the continuous spectra at small ω. Figure 10(a) shows weight, |C|, for mode A
obtained at ω = 10−4, 10−5, and 5 × 10−6 to illustrate convergence as ω → 0. For the
numerical decomposition into modes of the continuous spectra, in what follows, we
use ω = 5 × 10−6. The magnitudes of the weights for modes A and B and for entropy
modes are shown in figure 10(b).

Figures 11(a, b) and 12 demonstrate a comparison of the x-, y-, z-velocity
components, and temperature ‘measured’ and composed with the weights found
for the vorticity and entropy modes. Similarly to the incompressible case (Tumin
2003), one can see that there is a discrepancy between the ‘measured’ and composed
data of order 1/Re.

5. Discussion of the results
The spatial Cauchy problem was solved for three-dimensional perturbations in

compressible boundary layers. Although the numerical examples and the matrix
elements in Appendix A were given for two-dimensional boundary layers, all the
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results of § 2 are valid (after minor adjustments in (2.25)) for three-dimensional
boundary layers when the mean flow profiles are independent of the spanwise
coordinate, z. These results provide a tool to decompose perturbations given only
at a local station, x, into modes of continuous and discrete spectra. In order to
be able to distinguish the modes, one needs amplitude and phase distributions
for pressure, temperature, and velocity components, together with some of their
derivatives with respect to the coordinate x. This is possible in computational studies
of perturbations introduced into boundary layers, which might be helpful to elucidate
underlying mechanisms that are important in laminar–turbulent transition scenarios.
For example, we discussed in § 3 the synchronism of discrete modes F and S. One
of them might be unstable, and it could be responsible for transition to turbulence.
The other decaying mode might be synchronized with vorticity and entropy modes.
This means that there exists a route: ‘vorticity/entropy modes’ → ‘decaying discrete
mode’ → ‘unstable discrete mode’ → ‘transition to turbulence’ (Fedorov & Khokhlov
2001). In conventional computational studies, the generation of the instability mode
could only be observed in the far field, where the unstable mode dominates the other
modes of discrete and continuous spectra. However, the significant element of the
scenario – the decaying mode – could not be attained in the analysis. The present
method allows evaluation of the amplitude of the decaying modes in order to provide
a more rigorous background for interpretation of CFD results (Tumin et al. 2007).

Decomposition of perturbations when only partial information is available is an ill-
posed problem. Nevertheless, one can apply a regularization procedure to recover the
flow field. In fact, the assumption that the flow field is composed of downstream modes
only is an example of regularization leading to decomposition based on measured
velocity components and temperature only. We expect that developed methods of
regularization for ill-posed problems (Tikhonov & Arsenin 1977; Tikhonov et al.
1995) may allow a further reduction of measured data under reasonable assumptions.

Although the examples considered are associated with the cases when the solution
is composed of the downstream modes only, the orthogonality condition (B 6) allows
distinguishing upstream modes in the initial data as well. The main constraint on the
initial data is that they must be orthogonal to short-scale upstream modes in order to
provide finite downstream growth rate for the solution, and to carry out the inverse
Laplace transform.

The solution in the present work is based on the parallel flow approximation. This
approximation is valid when the length scale of interest is much smaller than the
characteristic scale of the unperturbed flow in the downstream direction. Results of
the present work are also based on the assumption that the normalization constant
Γ in (B 6) is not equal to zero. Fedorov & Khokhlov (2002) showed that the constant
is equal to zero at the branching point of two discrete modes, and the non-parallel
flow effects are to be taken into account in order to resolve the singularity. Analysis
of discrete and continuous spectra by Tumin et al. (2007) demonstrated that the
normalization constant tends to zero also in the case of synchronism between the
discrete mode and the continuous spectra. Therefore, an extension of the theoretical
model by Fedorov & Khokhlov (2002) is required when one needs to resolve the
mode close to a point of synchronism with the continuous spectra.

Another issue that we find worthwhile to address in this discussion is the
terminology used for discrete modes in high-speed boundary layers. Historically, the
terminology was introduced by Mack (1969). In his inviscid analysis of perturbations,
Mack discovered the existence of new instability modes. At finite Reynolds numbers
(see our example in § 3), there is only one unstable mode having signatures of Mack’s
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mode 1 and mode 2 (see figure 7a). Mathematically, this is a single mode associated
with a pole in the solution (2.27), and the pole is moving around the complex plane
in such a way that one can see two peaks in the imaginary part of α. (Balakumar &
Malik (1992) also emphasized that there exists only one unstable eigenvalue, α, for a
given β .) These two peaks are associated with Mack’s mode 1 and 2. The first peak
demonstrates that three-dimensional perturbations grow faster than two-dimensional,
whereas the second peak has the opposite trend. One should keep in mind that
the terminology based on Mack’s modes addresses different behaviours of the same
unstable mode at low and high frequencies.

This work was sponsored by the Air Force Office of Scientific Research, USAF
under grant No. FA9550-05-101 monitored by Dr J. D. Schmisseur. The views and
conclusions contained herein are those of the author and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of the Air Force Office of Scientific Research or the US Goverment.

Appendix A. The matrix elements
In what follows, Us , Ts , and µs are velocity, temperature, and viscosity of the mean

flow, respectively, and they are scaled with their values at the edge of the boundary
layer. The pressure is scaled with ρeU

2
e , and µ′

s =dµ/dTs; Re, Pr , and γ are the
Reynolds number, Prandtl number, and specific heat ratio, respectively; M is the
Mach number at the edge of the boundary layer; D= d/dy. The parameters r and
m are defined as r = 2(e + 2)/3 and m =2(e − 1)/3, and 2e/3 is the ratio of the bulk
viscosity to the dynamic viscosity. In particular, Stokes’ hypothesis corresponds to
e = 0.

Non-zero elements of the matrices in (2.1) are

L43
0 = − rµs

Re
,

L11
1 = L22

1 = L33
1 = L44

1 = L55
1 = L66

1 = L77
1 = L88

1 = 1,

L2,10
1 = L8,14

1 = m + 1.

H 12
1 = 1, H 21

1 = − iωRe

Tsµs

, H 22
1 = −Dµs

µs

, H 23
1 =

ReDU

Tsµs

,

H 25
1 = −D(µ′

sDU )

µs

, H 26
1 = −µ′

sDU

µs

,

H 33
1 =

DTs

Ts

, H 34
1 = iωγM2, H 35

1 = − iω

Ts

,

H 43
1 = iωρs, H 56

1 = 1,

H 62
1 = −2(γ − 1)PrM2DUs, H 63

1 =
RePr

Tsµs

DTs,

H 64
1 = iω(γ − 1)

RePr

µs

M2,

H 65
1 = −iω

RePr

Tsµs

− (γ − 1)
Pr

µs

M2µ′
s

(
∂Us

∂y

)2

− D(µ′
sDTs)

µs

,

H 66
1 = −2Dµs

µs

,
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H 78
1 = 1, H 87

1 = − iωRe

µsTs

, H 88
1 = −Dµs

µs

,

H 99
1 = H 10,10

1 = H 11,11
1 = H 12,12

1 = H 13,13
1 = H 14,14

1 = H 15,15
1 = H 16,16

1 = −1.

H 21
2 =

Re

Tsµs

Us, H 23
2 = −Dµs

µs

, H 24
2 =

Re

µs

, H 29
2 = −r,

H 31
2 = −1, H 34

2 = −γUsM
2, H 35

2 =
Us

Ts

,

H 41
2 =

mDµs

Re
, H 42

2 = (m + 1)
µs

Re
, H 43

2 = −Us

Ts

, H 45
2 =

µ′
s

Re
DUs, H 4,10

2 =
µs

Re
,

H 63
2 = −2(γ − 1)PrM2DUs, H 64

2 = −(γ − 1)
RePr

µs

M2Us,

H 65
2 =

RePr

Tsµs

Us, H 6,11
2 = −1,

H 87
2 =

ReUs

µsTs

, H 8,12
2 = −1, H 8,13

2 = −(m + 1),

H 9,1
2 = H 10,3

2 = H 11,5
2 = H 12,7

2 = 1.

H 2,12
3 = −(m + 1), H 2,13

3 = −1, H 37
3 = −1,

H 47
3 =

mDµs

Re
, H 48

3 = (m + 1)
µs

Re
, H 4,14

3 =
µs

Re
, H 6,15

3 = −1,

H 83
3 = −Dµs

µs

, H 84
3 =

Re

µs

, H 8,16
3 = −r,

H 13,1
3 = H 14,3

3 = H 15,5
3 = H 16,7

3 = 1.

One can also find the non-zero elements of the matrix H0 in (B 3) and (B 4) from
Nayfeh (1980) with the spanwise velocity of the mean flow equal to zero, α = −ip,
and

ω̂ = ω − αUs, χ =

[
Re

µs

− irγM2ω̂

]−1

.

H 12
0 = H 56

0 = H 78
0 = 1,

H 21
0 = α2 + β2 − iω̂

Re

µsTs

, H 22
0 = −Dµs

µs

,

H 23
0 = −iα(m + 1)

DTs

Ts

− iα
Dµs

µs

+ Re
DUs

µsTs

,

H 24
0 = iα

Re

µs

+ (m + 1)γM2αω̂, H 25
0 = −α(m + 1)

ω̂

Ts

− D(µ′
sDUs)

µs

,

H 26
0 = −µ′

sDUs

µs

,

H 31
0 = −iα, H 33

0 =
DTs

Ts

, H 34
0 = iγM2ω̂, H 35

0 = − iω̂

Ts

, H 37
0 = −iβ,

H 41
0 = −iχα

(
r
DTs

Ts

+ 2
Dµs

µs

)
, H 42

0 = −iαχ,

H 43
0 = χ

[
−α2 − β2 + i

ω̂Re

µsTs

+ r
D2Ts

Ts

+ r
DµsDTs

µsTs

]
,
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H 44
0 = −iχrγM2

[
αDUs − ω̂

DTs

Ts

− ω̂
Dµs

µs

]
,

H 45
0 = iχ

[
r
αDUs

Ts

+
µ′

s

µs

αDUs − rω̂
Dµs

µsTs

]
,

H 46
0 = −iχr

ω̂

Ts

, H 47
0 = −iχβ

(
r
DTs

Ts

+ 2
Dµs

µs

)
, H 48

0 = −iβχ,

H 62
0 = −2(γ − 1)M2PrDUs,

H 63
0 = −2i(γ − 1)M2PrαDUs + RePr

DTs

µsTs

,

H 64
0 = i(γ − 1)M2PrRe

ω̂

µs

,

H 65
0 = α2 + β2 − iRePr

ω̂

µsTs

− (γ − 1)M2Prµ′
s

(DUs)
2

µs

− D2µs

µs

,

H 66
0 = −2

Dµs

µs

, H 83
0 = −i(m + 1)β

DTs

Ts

− iβ
Dµs

µs

,

H 84
0 = (m + 1)γM2βω̂ +

iβRe

µs

,

H 85
0 = −(m + 1)

βω̂

Ts

,

H 87
0 = α2 + β2 − iω̂Re

µsTs

, H 88
0 = −Dµs

µs

.

Appendix B. The biorthogonal eigenfunction system
We introduce the following biorthogonal eigenfunction system {Aαβ, Bαβ}:

∂

∂y

(
L0

∂ Aαβ

∂y

)
+ L1

∂ Aαβ

∂y
= H1 Aαβ + iαH2 Aαβ + iβH3 Aαβ, (B 1)

y = 0: Aαβ1 = Aαβ3 = Aαβ5 = Aαβ7 = 0,

y → ∞: |Aαβj | < ∞,

∂

∂y

(
LT

0

∂ Bαβ

∂y

)
− LT

1

∂ Bαβ

∂y
= HT

1 Bαβ + iαHT
2 Bαβ + iβHT

3 Bαβ, (B 2)

y = 0: Bαβ2 = Bαβ4 = Bαβ6 = Bαβ8 = 0,

y → ∞: |Bαβj | < ∞.

Equation (B 2) defines the complex conjugate of the conventional adjoint problem.
Equation (B 1) can be recast as a system of eight ODEs,

dzαβ

dy
= H0zαβ, (B 3)

where vector zαβ is comprised of the first eight elements of the vector Aαβ . The
conventional adjoint problem in three-dimensional stability equations is found from
the following system of ODEs:

−dYαβ

dy
= H0Yαβ. (B 4)
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One can establish correspondence between Bαβ and Yαβ similar to the case of temporal
three-dimensional normal modes (FT):

Bαβ1 = Yαβ1 +
iαL43

0 Yαβ4(
1 + L43

0 H 34
0

) , Bαβ2 = Yαβ2, (B 5a, b)

Bαβ3 =Yαβ3 − iα(m+1)Yαβ2 − iβ(m+1)Yαβ8 − L43
0 H 33

0 Yαβ4(
1+L43

0 H 34
0

) +L43
0

d

dy

[
Yαβ4(

1+L43
0 H 34

0

)]
,

(B 5c)

Bαβ4 =
Yαβ4(

1 + L43
0 H 34

0

) , Bαβ5 = Yαβ5 + H 46
0 Y4, Bαβ6 = Yαβ6, (B 5d–f )

Bαβ7 = Yαβ7 +
iβL43

0 Yαβ4(
1 + L43

0 H 34
0

) , Bαβ8 = Yαβ8, Bαβ9 = −iαrBαβ2, (B 5g–i)

Bαβ10 = (m + 1)
dBαβ2

dy
+ iαH 4,10

2 Bαβ4, Bαβ11 = −iαBαβ6, (B 5j, k)

Bαβ12 = −iαBαβ8 − iβ(m + 1)Bαβ2, Bαβ13 = −iα(m + 1)Bαβ8 − iβBαβ2, (B 5l, m)

Bαβ14 = (m + 1)
dBαβ8

dy
+ iβH 4,14

3 Bαβ4, Bαβ15 = −iβBαβ6, Bαβ16 = −iβrBαβ8,

(B 5n–p)
where r and m are defined in Appendix A.

The eigenfunction system {Aαβ, Bαβ} has an orthogonality relation given as

〈H2 Aαβ, Bα′β〉 ≡
∫ ∞

0

(H2 Aαβ, Bα′β) dy = Γ �αα′, (B 6)

where Γ is a normalization constant; �αα′ is a Kronecker delta if either α or α′

belongs to the discrete spectrum; �αα′ is a Dirac delta function if both α and α′

belong to the continuous spectrum. Because (B 2) represents the complex conjugate
of the conventional problem, the dot product (, ) in (B 6) does not involve complex
conjugation. One can also establish the following equality:

〈H2 Aαβ, Bαβ〉 = −i

〈
∂H0

∂α
zαβ, Yαβ

〉
. (B 7)

In our computations of the adjoint eigenfunctions, we find Yαβ from (B 4) and
restore Bαβ with the help of (B 5). Because the derivation of asymptotic fundamental
solutions of (B 4) as y → ∞ is too complicated, we utilize the theorem (Kamke 1959)
that fundamental solutions of the adjoint system (B 4) can be found as vectors ξ j

composed of cofactors of the j th column in the matrix of fundamental solution,
m, defined in (2.15). Therefore, we do not derive the asymptotics, but find them
numerically with the help of the known asymptotic result for the matrix m. Utilizing
asymptotics for zj (see Appendix C), one can find asymptotics ξ j as follows:

ξ 1 = ξ 0
1e

λ2y, ξ 2 = ξ 0
2e

λ1y, ξ 3 = ξ 0
3e

λ4y, ξ 4 = ξ 0
4e

λ3y,

ξ 5 = ξ 0
5e

λ6y, ξ 6 = ξ 0
6e

λ5y, ξ 7 = ξ 0
7e

λ8y, ξ 8 = ξ 0
8e

λ7y.

}
(B 8)

For each fundamental solution ξ j having 8 components, one can restore
fundamental solutions ζ j for the adjoint problem (B 2) composed of 16 components
with the help of (B 5). These steps allow computation of the adjoint eigenfunctions
Bαβ of the discrete and continuous spectra.
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One can find the following presentation of the adjoint eigenvectors Bc corres-
ponding to the continuous spectra:

Bc,1 = ζ 1E1753 + ζ 2E2753 + ζ 4E4753 + ζ 6E6753 + ζ 8E8753, (B 9)

Bc,2 = ζ 1E1283 − ζ 4E2834 + ζ 5E2853 + ζ 6E2863 − ζ 7E2783, (B 10)

Bc,3 = ζ 1E6218 − ζ 3E2863 + ζ 4E2468 − ζ 5E6528 − ζ 7E6728, (B 11)

Bc,4 = ζ 2E1275 + ζ 3E1753 + ζ 4E1754 + ζ 6E1756 + ζ 8E7185, (B 12)

Bc,5 = ζ 1E1253 + ζ 4E5234 + ζ 6E2563 + ζ 7E7253 + ζ 8E8253. (B 13)

For the discrete modes, we find

Bν = ζ 2E1257 + ζ 4E1457 + ζ 6E1765 + ζ 8E1578. (B 14)

One can see that the coefficients in (2.30), (2.32), (2.33), (2.35), (2.37), and (2.39),
depending on the initial conditions, are associated with the adjoint eigenvectors,
respectively, as follows:

c2E1275 + c3E1753 + c4E1754 + c6E1756 + c8E7185 ∼ 〈H2 A0, Bc,4〉,
c1E1753 + c2E2753 + c4E4753 + c6E6753 + c8E8753 ∼ 〈H2 A0, Bc,1〉,
c1E1253 + c4E5234 + c6E2563 + c7E7253 + c8E8253 ∼ 〈H2 A0, Bc,5〉,
c1E1283 − c4E2834 + c5E2853 + c6E2863 − c7E2783 ∼ 〈H2 A0, Bc,2〉,
c1E6218 − c3E2863 + c4E2468 − c5E6528 − c7E6728 ∼ 〈H2 A0, Bc,3〉,

c2E1257 + c4E1457 + c6E1765 + c8E1578 ∼ 〈H2 A0, Bν〉.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 15)

Following Salwen & Grosch (1981), one can prove that the inverse Laplace transform
(2.40) is an expansion into the biorthogonal eigenfunction system {Aαβ, Bαβ}.

The asymptotic vectors Z0
j and ζ 0

j are used to calculate the normalization constant,
Γ , in the orthogonality relation (B 6) for the continuous spectra. Evaluation of the
normalization constant Γ for the continuous spectra can be found with the help of
integrals like

∫ ∞
0

exp(i(k − k′)y) dy = πδ(k − k′) (Tumin 2003). For example, one can
find for an acoustic mode

Γ = π
[(

H2 Z0
5, ζ

0
5

)
+

(
H2 Z0

6, ζ
0
6

)]
. (B 16)

Appendix C. Numerical method
Two independent codes were used in the present work. The first one (SCM) was

based on the single-domain Chebyshev spectral collocation method (Malik 1990).
Solution of the linearized Navier–Stokes equations for compressible gas is considered
in the wave-like form

(u, v, w, π, θ) = (û(y), v̂(y), ŵ(y), π̂(y), θ̂ (y))ei(αx+βz−ωt). (C 1)

In order to avoid the nonlinearity in α, we introduce the vector

Φ = (û, v̂, ŵ, π̂, θ̂ , iαû, iαv̂, iαŵ, iαθ̂)T , (C 2)

and the system of ODEs for the amplitude functions is written in the matrix form

(A1D
2 + A2D + A3)Φ = αA4Φ, (C 3)

where D= d/dy; A1, A2, A3, and A4 are 9 × 9 matrices.
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Homogeneous boundary conditions for (C 3) are formulated on the wall, y = 0, and
at y = ymax ,

y = 0 and y → ∞: Φj = 0 (j = 1, 2, 3, 5, . . . , 9). (C 4)

In the numerical implementation, the boundary conditions (C 4) were supplemented
by the y-momentum equation at y = 0 and y = ymax .

An algebraic stretching was employed in order to map interval [0, ymax] onto the
Chebyshev interval ξ ∈ [−1, +1],

y = d
1 + ξ

b − ξ
, (C 5)

where b = 1+2d/ymax and d = yiymax/(ymax −2yi). The parameter yi is chosen to locate
half of the grid points in the interval (0, yi). The Nth-order Chebyshev polynomials
TN were used with the collocation points

ξj = cos(πj/N), j = 0, . . . , N. (C 6)

The unknown functions and their derivatives at the collocation points, yj , are
presented as sums of the Chebyshev polynomials, Tn, with unknown coefficients, an:

Q(yj ) =

N∑
n=0

anTn(yj ), (C 7)

As a result of the discretization, we arrive at the generalized eigenvalue problem

Agã = αBgã, (C 8)

where Ag and Bg are 9(N + 1) × 9(N +1) matrices, and ã is the vector composed of
9(N +1) unknown coefficients. Because the rows of the matrix Bg corresponding to the
boundary conditions (C 4) contain only zeros, we replace them by the corresponding
rows of the matrix Ag divided by a large number, as was suggested by Hanifi,
Schmid & Henningson (1996). This introduces eigenvalues that are located far away
from the domain of interest in the complex plane α. The generalized eigenvalue
problem (C 8) was solved with the help of standard routine DG6CCG from the
IMSL FORTRAN Library.

Malik (1990) reported eigenvalue α =0.2534048 − i 0.0024921 for a two-
dimensional perturbation in a boundary layer over a flat plate with an adiabatic
wall. The following parameters were used: Mach number M =4.5; the Reynolds
number Re = 1500 was based on the Blasius scale; the stagnation temperature
T0 = 611.11 K; and the Prandtl number Pr =0.70. For these parameters, we considered
three-dimensional perturbations at β = 10−4. At N = 125, yi = 5, and ymax = 100, our
result was α = 0.2534416 − i 0.0027743. Variation of yi and ymax did not reveal a
difference within six digits. Increasing N up to 175 revealed an effect only on the
last digits of the real and imaginary parts of α. This code had an auxiliary role,
and it served for verification of the other code that was based on the fourth-order
Runge–Kutta solver for equations (B 3) and (B 4), and to provide an initial guess for
the eigenvalues.

In the second code (RK), the fundamental solutions of equations (B 3) and (B 4)
were found numerically by integration of the equations from ymax to the wall with the
known analytical asymptotic solutions outside the boundary layer, z0

j exp(λj y). One

can find the asymptotic vectors z0
j from (B 3) as y → ∞. For vectors z0

1,2 and z0
7,8,
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Balakumar & Malik (1992), β = 0 The present work, β = 10−4

(0.220, −3.091 × 10−3) (0.220, −3.091 × 10−3)
(0.221, 1.569 × 10−2) (0.221, 1.569 × 10−2)

(−0.565, 5.559 × 10−2) (−0.565, 5.560 × 10−2)
(0.560, 5.659 × 10−1) (0.561, 5.659 × 10−1)

Table 1. Flat plate. M = 4.5, T0 = 311 K, Pr = 0.72, Re = 1000, ω = 0.2

we have

z0
1,2 =

(
1, λ1,2, H

31
0

/
λ1,2, 0, 0, 0, 0, 0

)T
, (C 9)

z0
7,8 =

(
0, 0, H 37

0

/
λ7,8, 0, 0, 0, 1, λ7,8

)T
, (C 10)

where the matrix elements H
ij

0 are defined in Appendix A.
The non-zero elements zij of vectors z0

j (j = 3, . . . , 6) were calculated as follows:

z0
1j = 1, z0

2j = λj , z0
4j =

(
λ2

j − H 21
0

)
b23/b12, (C 11a)

z0
5j = −

(
b22 − λ2

j

)(
λ2

j − H 21
0

)/
b12, z0

6j = λj z
0
6j , (C 11b)

z0
7j =

(
H 84

0 z0
4j + H 85

0 z0
5j

)/(
λ2

j − H 87
0

)
, z0

8j = λj z
0
7j , (C 11c)

z0
3j =

(
H 31

0 z0
1j + H 34

0 z0
4j + H 35

0 z0
5j + H 37

0 z0
7j

)/
λj , (C 11d)

where b12 = H 24
0 b23 − H 25

0 (b22 − λ2
j ), and b22 and b23 are defined in (2.11).

Asymptotic vectors ξ 0
j for the system (B 4) were found numerically from the matrix

of the fundamental solutions m introduced in (2.15) (see discussion of properties of the
adjoint system in Appendix B). The Gram–Schmidt orthonormalization procedure
was employed in the computation of the fundamental solutions zj and ξ j during
integration across the boundary layer.

Finally, the eigenfunctions of the direct and adjoint problems could be obtained as a
sum of the fundamental solutions with unknown coefficients that are to be determined
from the boundary conditions on the wall. In the case of continuous spectra, the
eigenfunctions are composed of five fundamental solutions. The unknown coefficients
could be found from four boundary conditions on the wall (û = v̂ = ŵ = θ̂ = 0) and
the normalization condition dû/dy (0) = 1. The wavenumbers α corresponding to
the modes of the continuous spectra were found from the equation λ2

j = − k2.
For the problem of the discrete spectrum, the eigenfunctions are composed of
four fundamental solutions z1, z3, z5, and z7. The four unknown coefficients were
determined from the boundary conditions û= v̂ = ŵ = 0 and the normalization
condition dû/dy (0) = 1. The eigenvalue α was found with the help of the Newton
method as a root of the equation θ(0) = 0. The convergence criterion was chosen as
|θ(0)| < ε with ε � 10−5.

We tested the code with the example discussed above. The outer boundary was
chosen as ymax =35, with the uniform grid having N =601 nodes and the convergence
criterion ε = 10−5. The spanwise wavenumber β was held at 10−4. The eigenvalue
found was α = 0.2534420 − i 0.0027738. The result remained the same for N = 1201,
ε = 10−5, and N = 601, ε = 10−7.

In another test, we used the eigenvalues reported by Balakumar & Malik (1992)
for a boundary layer over an adiabatic flat plate at Mach number M =4.5, Prandtl
number Pr = 0.72, stagnation temperature in the free stream T0 = 311 K, Reynolds
number Re = 1000, and dimensionless frequency ω = 0.2. In table 1, we compare our
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Balakumar & Malik (1992) The present work

(0.2181, 2.969 × 10−4) (0.2181, 2.974 × 10−4)
(0.2124, 1.288 × 10−2) (0.2124, 1.288 × 10−2)

(−0.5498, 5.684 × 10−2) (−0.5499, 5.685 × 10−2)

Table 2. Flat plate. M =4.5, T0 = 311 K, Pr =0.72, Re = 1000, ω = 0.2, β = 0.12

eigenvalues, α, obtained with help of the RK solver at β =10−4 and results from
Balakumar & Malik (1992) at β = 0. A comparison of eigenvalues α corresponding
to β =0.12 is given in table 2.
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